Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Experience management (EM) agents in multiplayer serious games face unique challenges and responsibilities regarding the fair treatment of players. One such challenge is the Greedy Bandit Problem that arises when using traditional Multi-Armed Bandits (MABs) as EM agents, which results in some players routinely prioritized while others may be ignored. We will show that this problem can be a cause of player non-adherence in a multiplayer serious game played by human users. To mitigate this effect, we propose a new bandit strategy, the Shapley Bandit, which enforces fairness constraints in its treatment of players based on the Shapley Value. We evaluate our approach via simulation with virtual players, finding that the Shapley Bandit can be effective in providing more uniform treatment of players while incurring only a slight cost in overall performance to a typical greedy approach. Our findings highlight the importance of fair treatment among players as a goal of multiplayer EM agents and discuss how addressing this issue may lead to more effective agent operation overall. The study contributes to the understanding of player modeling and EM in serious games and provides a promising approach for balancing fairness and engagement in multiplayer environments.more » « less
-
BackgroundInnovative approaches are needed to understand barriers to and facilitators of physical activity among insufficiently active adults. Although social comparison processes (ie, self-evaluations relative to others) are often used to motivate physical activity in digital environments, user preferences and responses to comparison information are poorly understood. ObjectiveWe used an iterative approach to better understand users’ selection of comparison targets, how they interacted with their selected targets, and how they responded to these targets. MethodsAcross 3 studies, different samples of insufficiently active college students used the Fitbit system (Fitbit LLC) to track their steps per day as well as a separate, adaptive web platform each day for 7 to 9 days (N=112). The adaptive platform was designed with different layouts for each study; each allowed participants to select their preferred comparison target from various sets of options, view the desired amount of information about their selected target, and rate their physical activity motivation before and after viewing information about their selected target. Targets were presented as achieving physical activity at various levels below and above their own, which were accessed via the Fitbit system each day. We examined the types of comparison target selections, time spent viewing and number of elements viewed for each type of target, and day-level associations between comparison selections and physical activity outcomes (motivation and behavior). ResultsStudy 1 (n=5) demonstrated that the new web platform could be used as intended and that participants’ interactions with the platform (ie, the type of target selected, the time spent viewing the selected target’s profile, and the number of profile elements viewed) varied across the days. Studies 2 (n=53) and 3 (n=54) replicated these findings; in both studies, age was positively associated with time spent viewing the selected target’s profile and the number of profile elements viewed. Across all studies, upward targets (who had more steps per day than the participant) were selected more often than downward targets (who had fewer steps per day than the participant), although only a subset of either type of target selection was associated with benefits for physical activity motivation or behavior. ConclusionsCapturing physical activity–based social comparison preferences is feasible in an adaptive digital environment, and day-to-day differences in preferences for social comparison targets are associated with day-to-day changes in physical activity motivation and behavior. Findings show that participants only sometimes focus on the comparison opportunities that support their physical activity motivation or behavior, which helps explain previous, equivocal findings regarding the benefits of physical activity–based comparisons. Additional investigation of day-level determinants of comparison selections and responses is needed to fully understand how best to harness comparison processes in digital tools to promote physical activity.more » « less
-
null (Ed.)This paper focuses on player modeling in multiplayer adaptive games. While player modeling has received a significant amount of attention, less is known about how to use player modeling in multiplayer games, especially when an experience management AI must make decisions on how to adapt the experience for the group as a whole. Specifically, we present a multi-armed bandit (MAB) approach for modeling groups of multiple players. Our main contributions are a new MAB frame- work for multiplayer modeling and techniques for addressing the new challenges introduced by the multiplayer context, extending previous work on MAB-based player modeling to account for new group-generated phenomena not present in single-user models. We evaluate our approach via simulation of virtual players in the context of multiplayer adaptive exergames.more » « less
An official website of the United States government

Full Text Available